
Agilent E2960 PCI Express

User Guide
S1

Important Notice

© Agilent Technologies, Inc. 2004

Manual Part Number

E2960-91020

Revision

November 2004

Printed in Germany

Agilent Technologies
Herrenberger Straße 130
D-71034 Böblingen
Germany

Authors: t3 medien GmbH

Warranty

The material contained in this document is
provided "as is," and is subject to being changed,
without notice, in future editions. Further, to the
maximum extent permitted by applicable law,
Agilent disclaims all warranties, either express or
implied, with regard to this manual and any
information contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a particular
purpose. Agilent shall not be liable for errors or
for incidental or consequential damages in
connection with the furnishing, use, or
performance of this document or of any
information contained herein. Should Agilent and
the user have a separate written agreement with
warranty terms covering the material in this
document that conflict with these terms, the
warranty terms in the separate agreement shall
control.

Technology Licenses

The hardware and/or software described in this
document are furnished under a license and may
be used or copied only in accordance with the
terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S.
Government prime contract or subcontract,
Software is delivered and licensed as
"Commercial computer software" as defined in
DFAR 252.227-7014 (June 1995), or as a
"commercial item" as defined in FAR 2.101(a) or
as "Restricted computer software" as defined in
FAR 52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is subject to
Agilent Technologies' standard commercial
license terms, and non-DOD Departments and
Agencies of the U.S. Government will receive no
greater than Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Government
users will receive no greater than Limited Rights
as defined in FAR 52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls
attention to an operating procedure, practice, or
the like that, if not correctly performed or adhered
to, could result in damage to the product or loss
of important data. Do not proceed beyond a
CAUTION notice until the indicated conditions
are fully understood and met.

WARNING/DANGER

A WARNING notice denotes a hazard. It calls
attention to an operating procedure, practice, or
the like that, if not correctly performed or adhered
to, could result in personal injury or death. Do not
proceed beyond a WARNING notice until the
indicated conditions are fully understood and
met.

Trademarks

Windows NT ® and MS Windows ® are U.S.
registered trademarks of Microsoft Corporation.
2 Agilent E2960 PCI Express, User’s Guide, November 2004

Content
Content

About this Guide 5

System Overview 7

Intended Use 8

The Protocol Exerciser for PCI Express 10

The Protocol Analyzer for PCI Express 11

Software Components 12

Session Concept 14

Starting and Configuring a Session 15

Using a Session at Several Computers 15

Running Your First Tests 17

Testing the Communication to an Add-In Card 18

Establishing an Exerciser Session 19

Establishing a PCI Express Link 23

Sending a Single Data Packet 25

What Happens at the Exerciser when sending a Single
Packet? 28

Analyzing the Communication to an Add-In Card 30

Establishing an Analyzer Session 31

Setting Up a Trigger 33

Starting the Analyzer 36

Validating the System 38

Setting Up the Trigger for the System Validation Test 40

Writing Data to the Protocol Exerciser’s Data Memory 43

Setting Up and Running Block Transfers 44

Viewing the Results Using the User Interface 49

What Happens at the Exerciser when transferring a Block? 52

Bringing Up and Debugging a PCI Express Add-In Card 53

Setting Up the Trigger for the Bring Up and Debug Test 55

Modifying Specific Link Settings 59

Running the Test and Viewing the Results for the Bring Up
and Debug Test 60
Agilent E2960 PCI Express, User’s Guide, November 2004 3

Content
Exerciser Architecture Overview 61

Exerciser as Requester 62

Exerciser as Completer 65

Exerciser Components 67

How to Program the Exerciser and Analyzer 69

Using the DCOM API 70

Opening a New Session 71

Accessing a Running Session 72

Controlling the Exerciser from a SUT 73

Differences between the PCIe Port API and DCOM API 73

Working with the PCIe Port API 74

Example of Using the In-System Port 75

Appendix 77

Starting an Exerciser Session 77

Establishing a Link 79

Sending a Single Packet 80

Starting an Analyzer Session 82

Downloading a Trigger Setup File to the Analyzer 83

Writing Data to the Protocol Exerciser’s Data Memory 84

Setting Up and Running Block Transfers 85

Modifying Link Settings on the Exerciser 89
4 Agilent E2960 PCI Express, User’s Guide, November 2004

About this Guide

This Guide provides you with the information you need to get started
working with the Agilent test solution for PCI Express. It contains the
following chapters:

• “System Overview” on page 7

Briefly explains the main concepts behind the Agilent test solution
for PCI Express.

• “Running Your First Tests” on page 17

Provides some examples for using the Agilent test solution for PCI
Express.

• “Exerciser Architecture Overview” on page 61

Explains how the Exerciser is structured and gives an overview as
to how it works as a requester and completer.

• “How to Program the Exerciser and Analyzer” on page 69

Explains how the Agilent test solution for PCI Express can be used
programmatically.

The instructions in this Guide assume a correctly running system
(controller PC up and running, software correctly installed on the
clients). See the Getting Started and Installation Guide for details.

Literature General and detailed information on PCI Express can be obtained
from Intel (http://www.intel.com/technology) and the PCI-SIG web site
(http://www.pcisig.com).

Features and technical data of the Agilent PCI Express hardware and
software are published in the data sheet “Agilent Technologies E2960
Series Exerciser and Protocol Analyzer for PCI Express”, publication
number 5988-8679EN.

Updated product information For updated product information, please visit also
http://www.agilent.com/find/E2960_series.
Agilent E2960 PCI Express, User’s Guide, November 2004 5

About this Guide
6 Agilent E2960 PCI Express, User’s Guide, November 2004

System Overview

PCI Express is designed to replace the PCI bus as the main I/O
expansion bus in a wide range of systems. The multi-drop parallel bus
approach of PCI is being replaced with a high-speed serial I/O bus that
uses point-to-point signaling and a packetized protocol. The PCI
Express architecture is scalable and extensible, and includes a rich set
of features.

With the E2960 series, Agilent Technologies provides a family of
Protocol Analyzers and Exercisers for PCI Express designed to
support the increased need for analysis and validation of PCI Express
chipsets and systems.

The Agilent test solution for PCI Express is a combined
software/hardware solution.

The following sections provide you with an overview of the Agilent
solution, its software components, and how they work together:

• “Intended Use” on page 8

• “Software Components” on page 12

• “Session Concept” on page 14
Agilent E2960 PCI Express, User’s Guide, November 2004 7

System Overview Intended Use
Intended Use

Background Today’s key trends in the electronics industry aim for smaller and
smaller chip geometries and CMOS technology being able to run at
higher and higher frequencies. The pin count needed for parallel
busses prevents the industry to take full advantage of these technology
developments (pad versus gate limitations). Moving from parallel to
serial busses will help the industry to focus on further integration in
functionality and resulting cost reductions.

Figure 1 Typical PCI Express Server Architecture

SATA

LPC

USB

PCI Express

PCI Express

PCI Express

PCI ExpressPCI Express

PCI Express

PCI
Express PCI

PCI-X PCI-X

GbE

Graphics

Switch

Bridge Bridge Bridge

Chipset

Bridge IO

Memory

CPU CPU

PCI
Express
8 Agilent E2960 PCI Express, User’s Guide, November 2004

Intended Use System Overview
PCI Express, a protocol introduced to the public in 2002, will change
the way computer systems will be built in the near future. PCI Express
operates at 2.5 GBit/s and uses two low voltage differential signals
(LVDS) lines for transmitting and receiving data. Such a four-wire
connection, called a PCI Express link x1 (pronounced: by one), is the
foundation of PCI Express. Several of these links can be combined to
provide higher bandwidth. The specification calls out for PCI Express
x1, x2, x4, x8, x16 and x32. A by eight PCI Express link (x8) features a
bandwidth of 40 Gbit/s.

The previous figure illustrates a two-way server architecture based on
PCI Express. All key elements of the server (Chipset, Ethernet,
Graphics core) are connected via PCI Express. Different link widths
(x1, x4, x8, x16) are used to accompany the necessary bandwidth
needs. Traditional IO standards like PCI or PCI-X are connected with
bridges to PCI Express. Switches will be used to route PCI Express
traffic in such an architecture.

Test requirements The move from parallel busses to serial busses will result in different
analysis and validation needs:

• Higher frequencies require enhanced test considerations on the
physical layer.

• Point-to-point connections require enhanced probing solutions as
well as different analyzer and stimulus (exerciser) tools.

• Complexer system components require different test methodology
with increased focus on protocol testing.

The Agilent solution With the E2960 series, Agilent Technologies provides a family of
Protocol Analyzers and Exercisers for PCI Express designed to
support this increased need for analysis and validation.

The E2960 series provides two types of testers:

• Protocol Exerciser for PCI Express (x1 to x8)

• Protocol Analyzer for PCI Express (x1 to x8)

Both tools are based on the same Serial I/O Module and probes,
combined with unique software packages.
Agilent E2960 PCI Express, User’s Guide, November 2004 9

System Overview Intended Use
The Protocol Exerciser for PCI Express
The Protocol Exerciser for PCI Express is able to generate and respond
to all types of PCI Express transactions. In addition, it allows you to
create various PCI Express protocol variations and violations.

Another key feature is the ability to insert errors and test the behavior
of designs in response to these errors. Errors can be generated and
inserted on the physical, data link, and transaction layers.

The Protocol Exerciser for PCI Express is controlled by a graphical
user interface, a C/C++ program or a Tcl script.

With these features and more, the Protocol Exerciser for PCI Express
is perfectly suited for:

Validating PCI Express systems You can use the Protocol Exerciser to validate a PCI Express system
(Upstream testing).

Figure 2 Protocol Exerciser Setup for Testing a System (To Upstream)

Bringing up and debugging PCI

Express devices

You can use the Protocol Exerciser to bring up and debug a device
(Downstream testing).

Figure 3 Protocol Exerciser Setup for Testing a Device (To Downstream)

The Protocol Exerciser functionality includes testing the physical and
data link layer capabilities of a PCI Express device as well as
simulating such devices on the transaction layer.

The Protocol Exerciser for PCI Express is also well suited for
validating the inter-operability and stability of chipsets and systems.

021011

System Under Test

021011
Device Under Test
10 Agilent E2960 PCI Express, User’s Guide, November 2004

Intended Use System Overview
The Protocol Analyzer for PCI Express
The Protocol Analyzer for PCI Express is used for capturing and
analyzing the traffic between two PCI Express endpoints:

Listening to a system and add-in card You can insert the Protocol Analyzer between a device and a system to
capture the traffic.

Figure 4 Protocol Analyzer Setup for Testing Communication to an Add-In Card

Listening to two chips on a

motherboard

You can connect the Protocol Analyzer to a midbus footprint on the
motherboard to listen to the traffic between two chips. See the data
sheet for the E2941A Midbus Probe for details.

Figure 5 Protocol Analyzer Setup for Testing Communication between two Chips

The Protocol Analyzer captures traffic simultaneously from both
directions, including training sequences, packets on the data link layer
(DLLPs), and packets on the transaction layer (TLPs). It has 1 GB of
trace memory.

The Protocol Analyzer for PCI Express includes a sophisticated trigger
sequencer. Its graphical user interface allows you to filter the captured
data and to view and investigate the packets in a variety of formats. It
can also be controlled by a C/C++ program or a Tcl script.

With these features, the Protocol Analyzer for PCI Express is perfectly
suited for testing and troubleshooting PCI Express links.

021011
Device Under Test

Sy stem

Chip A

Chip B

021011

CPU

E2941A
Agilent E2960 PCI Express, User’s Guide, November 2004 11

System Overview Software Components
Software Components

The Agilent test solution for PCI Express contains several advanced
software components that work together:

• Firmware

Runs on the Serial I/O module

Responsible for carrying out the actual tests

Controlled by the control software running on the controller PC

• Control software

Runs on the controller PC

Responsible for setting up and maintaining communication with the
I/O module, loading tests to the I/O module

Controlled by the user software

• User software

Runs on the client (local PC)

Responsible for setting up tests

Controlled by the user or programmer

The user software can be either the Agilent Protocol Exerciser and
Protocol Analyzer software, or a tcl script or DCOM-based test
program.
12 Agilent E2960 PCI Express, User’s Guide, November 2004

Software Components System Overview
The following figure illustrates the relationships between these
software components:

Figure 6 PCI Express Software Components

NOTE Note that the user software can also run on the controller PC. In this
case, the controller PC can be seen as its own client.

Clients with User Software

tcl Scripts

Exerciser / Analyzer SW

Controller PC with Control Software Serial I/ O Module and Probe
Board with Firmware

DCOM-based Programs

O

—

02
XC

101
XC

1

XC XC

P
riv

at
e

LA
N

LA
N

Agilent E2960 PCI Express, User’s Guide, November 2004 13

System Overview Session Concept
Session Concept

The communication between the controller PC and the Serial I/O
Modules is based on the concepts of sessions. A session is a
representation of the instrument components involved in a test:

• The control software running on the controller PC

• The Serial I/O Module and the probe involved in the test

The following figure indicates the components involved in a session. It
also indicates how more than one client can log onto one session.

Figure 7 Session components

To use a session, it is necessary to:

• Start and configure the session

This establishes communication between the client and the control
PC and loads the necessary firmware onto the desired Serial I/O
Module, which then assumes the personality required for the
session (for example, Exerciser in upstream mode).

• End the session

In the Exerciser and Analyzer software, when you quit using a
session and you are the last one using the session, you are prompted
as to whether the session should be ended. Ending a session clears
the Serial I/O Module, allowing it to be used for a new session.

O

 —

02
XC

101
XC

1

XC XC

Session A
Session B
14 Agilent E2960 PCI Express, User’s Guide, November 2004

Session Concept System Overview
All accesses to the test system must go over the session. The session is
not locked: concurrent access to one session is possible. This is
described under “Using a Session at Several Computers” on page 15.

Starting and Configuring a Session
When the user software is started, it queries the control software
running on the controller PC for a list of currently running sessions of
the corresponding type (for example, a query by the Protocol Exerciser
software returns a list of Exerciser-based sessions). The user software
can either connect to one of these existing sessions, or request a new
session.

If a new session is requested, the following occurs:

1. The user requests a session of a particular type (Exerciser or
Analyzer).

2. The user adds a Serial I/O Module and its port (to the probe) to the
session.

3. The Serial I/O Module downloads the necessary FPGAs and
embedded software from the control PC.

4. The embedded software running on the Serial I/O Module
configures the probe as necessary.

See “Opening a New Session” on page 71 to learn how to start and
configure a session in your own program.

Using a Session at Several Computers
If a session is up and running, you can use it from multiple instances
of the user interface (for example, from different clients) or from tcl
scripts or DCOM-based programs simultaneously. This could be
necessary if you, for example, want to set up a test system directly at
the controller PC and then run a series of tests from your PC.

The controller PC does not protect against meaningless or even
conflicting requests. It is therefore recommended that only one user
should “own” a particular session at a time.

To connect to a current session in the user interface, you only need to
note the session number and then select this session when the
software starts.

See “Accessing a Running Session” on page 72 to learn how to
connect to a running session in your own program.
Agilent E2960 PCI Express, User’s Guide, November 2004 15

System Overview Session Concept
16 Agilent E2960 PCI Express, User’s Guide, November 2004

Running Your First Tests

The following sections guide you step-by-step through your first tests
with Agilent test solution for PCI Express:

• “Testing the Communication to an Add-In Card” on page 18

This test demonstrates how you set up communication between a
probe board to be used as an Exerciser and a PCI Express add-in
card that you would like to test. With the information here, you
should also be able to set up tests between a probe board and a PCI
Express system.

• “Analyzing the Communication to an Add-In Card” on page 30

This test shows you how you capture PCI Express communication
between an add-in card and another probe board as Exerciser by
using a probe board as Analyzer.

• “Validating the System” on page 38

With this test, you see how you can analyze how a PCI Express
system responds to requests with different behaviors and errors.

• “Bringing Up and Debugging a PCI Express Add-In Card” on
page 53

With this test, you see how you can verify the correct behavior of an
add-in card during link training when the requester changes link
settings.
Agilent E2960 PCI Express, User’s Guide, November 2004 17

Running Your First Tests Testing the Communication to an Add-In Card
Testing the Communication to an
Add-In Card

For this test, we want to set up a PCI Express link between a probe
board and an add-in card (for example, graphic card) and then test
how the add-in card reacts to an errored packet.

System Setup The following system setup is required for this test:

• The add-in card to be tested is plugged into the PCI Express slot at
the top of the probe board.

• The Serial I/O Module to which the probe board is connected is set
up as a Protocol Exerciser.

• An external ATX power supply is connected to the probe board. The
power jumper on the probe board should be set to Ext (instead sys).

The external power supply is required to power the add-in card.
Alternatively, you could plug the probe board into a powered PCI
Express slot and set the jumper to sys.

The system setup is as follows:

Figure 8 Protocol Exerciser Setup for Testing a PCI Express Add-In Card

(To Downstream)

021011
Device Under Test

Priv ate
LAN

Exerciser

ATX Pow er Supply

Client

Corporate
LAN

Controller PC
18 Agilent E2960 PCI Express, User’s Guide, November 2004

Testing the Communication to an Add-In Card Running Your First Tests
How to Proceed This test is carried out as follows:

1. We establish an Exerciser session at the client. This establishes the
necessary communication and sets up the Serial I/O Module (with
probe) to be used as an Exerciser.

See “Establishing an Exerciser Session” on page 19.

2. We set up and establish a PCI Express link between the Exerciser
and the add-in card.

See “Establishing a PCI Express Link” on page 23.

3. We set up the Exerciser to perform a data read on the add-in card.
This is done by sending a data read request as a single packet to the
add-in card.

See “Sending a Single Data Packet” on page 25.

Once you have carried out the test, see “What Happens at the
Exerciser when sending a Single Packet?” on page 28 to find out what
happens internally in the Exerciser by such tests.

TCL Scripts The following TCL scripts correspond to the requirements of this
example:

• “Starting an Exerciser Session” on page 77

• “Establishing a Link” on page 79

• “Sending a Single Packet” on page 80

Establishing an Exerciser Session
Before you can run any tests with the Exerciser, you have to establish
a session at the client. A session is responsible for the following:

• Communication between the client and controller PC

• Configuration of the Serial I/O Module and probe board
Agilent E2960 PCI Express, User’s Guide, November 2004 19

Running Your First Tests Testing the Communication to an Add-In Card
To start an Exerciser session from a client:

1 Start the PCI Express Protocol Exerciser software on your PC.

The software requires the network name or IP address of the
controller PC so that it can communicate with the controller PC.
The Select type of connection dialog box opens, which allows you to
specify that you want to establish a new session and enter the
network name (or IP address) of the controller PC.

Figure 9 Select type of connection Dialog Box

2 Select Connect to new session, enter the network name of the
controller PC under Server and then click Start.

The Choose a Sessiontype dialog box opens. This dialog box allows
you to define the session type (upstream or downstream).

Figure 10 Choose a Sessiontype Dialog Box
20 Agilent E2960 PCI Express, User’s Guide, November 2004

Testing the Communication to an Add-In Card Running Your First Tests
3 Because we are testing an add-in card, we need a downstream
session. Click To Downstream.

The new session is started on the controller PC, the client connects
to this session. When the connection has been established, the
Select port to open dialog box opens. This dialog box indicates
which Serial I/O Modules are ready to be used, and which are
already in use. When starting a session, you can only select a
module that is not in use.

Figure 11 Select port to open Dialog Box
Agilent E2960 PCI Express, User’s Guide, November 2004 21

Running Your First Tests Testing the Communication to an Add-In Card
4 Select the Serial I/O Module that is connected to the probe board
and click OK. You can see the module number on the display on the
front of the Serial I/O Module.

The embedded software and FPGA contents are now loaded onto
the Serial I/O Module and the PCI Express Protocol Exerciser
software starts.

Figure 12 PCI Express Protocol Exerciser Software

TIP Enter a description and save the setup by clicking the Save icon. You
can then use this setup for later tests.
22 Agilent E2960 PCI Express, User’s Guide, November 2004

Testing the Communication to an Add-In Card Running Your First Tests
Establishing a PCI Express Link
After you have established a session, you have to establish a PCI
Express link to the add-in card. Depending on the add-in card, you
may have to configure the link (for example, allowed link width).

To establish a PCI Express link:

1 Select the General icon on the Exerciser.

This opens the General card with the Link Settings tab on top,
allowing you to configure the link. The Hardware Status informs
you about the current link state. We can see here that the link is not
up yet.

Figure 13 Link Settings

2 Select the desired Supported Link Widths

This allows you to select which link widths the Exerciser will allow
(x1, x2, x4, x8). The support of x1 is mandatory per PCI Express
specification and is therefore always selected.

The Negotiated Link Widths indicates the link width the two
partners have agreed upon after link up. The Negotiated Link
Widths depend on the capabilities of the Exerciser and add-in card.
Agilent E2960 PCI Express, User’s Guide, November 2004 23

Running Your First Tests Testing the Communication to an Add-In Card
3 Select Bench for the DUT Connectivity. To Downstream should
already be defined as the Session Type.

DUT Connectivity defines how the probe board is connected to the
DUT (Bench or Platform).

NO TE If you were testing a system, To Upstream should be selected for the
Session Type.

4 If not already running, power up the add-in card.

5 Initiate link training by clicking Link Up in the Action menu.

The Exerciser now establishes communication with the add-in card.
When the link state changes to Active, the link has been established.

The Exerciser is now ready for testing.
24 Agilent E2960 PCI Express, User’s Guide, November 2004

Testing the Communication to an Add-In Card Running Your First Tests
Sending a Single Data Packet
Once we have established a link between the Exerciser and the add-in
card, we can quickly perform a memory read on the add-in card by
sending a read request as a single packet. The Exerciser software
provides all standard PCI Express requests. The Exerciser software
also allows you to define the request behavior so that specific errors
are added to the packets to be transferred.

To send a single data packet:

1 Click the Send Single Packet icon.

The Send Single Packet card opens with the Single Packet tab on
top. A 32-bit Memory Read request with one corresponding request
behavior is included.

Figure 14 Send Single Packet Card

Note that you can add a request by clicking the Add Request icon.

32-bit Memory Read Request

Corresponding Request Behavior
Agilent E2960 PCI Express, User’s Guide, November 2004 25

Running Your First Tests Testing the Communication to an Add-In Card
2 If the PCI Express add-in card has special requirements (for
example, the memory area available for access), change any of the
request parameters marked with an asterisk (*) as necessary.

In this example, we set the physical address to be read to 0x200000.

Figure 15 Request Parameter Setting

3 In Request Behavior, define the behavior so that the packet is sent
with an incorrect LCRC by clicking LCRC in Request Behavior and
then setting the LCRC to Incorrect in the field below.

Sending packets with errors allows you to check the packet
verification of the add-in card. A packet with an incorrect LCRC
must cause the add-in card to reply with a NAK. The Exerciser’s
replay algorithm then replays the packet with correct LCRC. This
packet must then be acknowledged with an ACK by the add-in card.

Figure 16 Single Packet with Incorrect LCRC
26 Agilent E2960 PCI Express, User’s Guide, November 2004

Testing the Communication to an Add-In Card Running Your First Tests
4 Click Send Single Packet in the Action menu to send the packet.

The packet is first sent with the error. When the PCI Express system
or the PCI Express add-in card returns a NAK (negative-
acknowledge), the software sends the packet without the error.

5 Click the Received Completions tab to view the completions.

The Exerciser stores completions to single packets and presents
these in the Received Completions tab. This allows you to see how
the add-in card responded to the read request.

Figure 17 Received Completions

As you can see in this figure, the add-in card sent a completion with
data. You do not see the NAK here, because a NAK is not a completion.
Agilent E2960 PCI Express, User’s Guide, November 2004 27

Running Your First Tests Testing the Communication to an Add-In Card
What Happens at the Exerciser when
sending a Single Packet?
Familiarity with the internal structure of the Exerciser is helpful for
understanding how the Exerciser works when sending a single packet.
The following figure illustrates the Exerciser components involved in
this task.

Figure 18 Exerciser as Requester (sending a single packet)

The Exerciser has a memory area for the Send Single Packet function
(the SP Mem. in this figure). When you set up a single packet, the
request, request behavior, and any data are written to this area. When
you then send the single packet, the packet is assembled at the
transaction layer according to the behavior and passed to the data link
layer (DLL).

Transaction Layer

DLL / Phy. Layer

Payload

Packet Packet

Hardware
Channel A

Hardware
Channel A

Data Memory

PRM

Trans. 1

Trans.2

. . .

Trans. n

TX RX

Algorithmic Data
Generator

Hardware
Channel A

Req. Beh.
Memory

Behavior 1

Behavior 2

. . .

Behavior n

Block
Memory
Request

Request 2

. . .

Request n

Payload

SP Mem.

Trans. 1

Behavior 1

Data

SI Compl. Mem.

Compl. 1

Compl. 2

Compl. n
28 Agilent E2960 PCI Express, User’s Guide, November 2004

Testing the Communication to an Add-In Card Running Your First Tests
For any requests that expect a response (for example, a memory read),
an entry is added in the Pending Request Map (PRM). The PRM keeps
track of which responses are still open, which have been returned, and
to which memory location returned data from responses should be
written.

When a response is returned, the Exerciser looks up the request in the
PRM and writes the transaction to the Send Immediate Completion
Memory (SI Compl. Mem.). In the user software, this is shown in the
Returned Completions window. It additionally writes any returned
data to the memory location defined with the request (which is
typically the Single Packet Memory).

If an error that forces a NAK has to be added to a packet (for example,
wrong LCRC), the packet is sent once incorrectly. When the device or
system under test returns a NAK, the packet is sent correctly.

See “Exerciser as Requester” on page 62 for a detailed description of
how the Exerciser acts as a requester.
Agilent E2960 PCI Express, User’s Guide, November 2004 29

Running Your First Tests Analyzing the Communication to an Add-In Card
Analyzing the Communication to
an Add-In Card

If you have a second Serial I/O Module with probe board and the PCI
Express Protocol Analyzer software, you can additionally monitor the
packets sent on the link. This allows you to analyze the contents of the
individual packets, for example to see how the DUT responds to
errored packets.

System Setup The following system setup is required for this test:

• The add-in card to be tested is plugged into the PCI Express slot at
the top of the probe board set up as Analyzer.

• The Analyzer probe board is plugged into the PCI Express slot at the
top of the probe board set up as Exerciser.

• An external ATX power supply is connected to the probe board. The
power jumper on the probe board should be set to Ext (instead sys).

The external power supply is required to power the add-in card.
Alternatively, you could plug the probe board into a powered PCI
Express slot and set the jumper to sys.

The system setup is as follows:

Figure 19 Protocol Analyzer Setup for Testing Communication with an Add-In Card

Priv ate
LAN

Client

Corporate
LAN

Controller PC

Exerciser

ATX Pow er Supply

021011

Device Under Test

Analyzer
30 Agilent E2960 PCI Express, User’s Guide, November 2004

Analyzing the Communication to an Add-In Card Running Your First Tests
How To Proceed This test is carried out as follows:

1. We have to establish an Exerciser session (described in
“Establishing an Exerciser Session” on page 19) and an Analyzer
session at the client.

See “Establishing an Analyzer Session” on page 31.

2. We set up a trigger on the Analyzer so that the Analyzer captures
traffic around a specific packet.

See “Setting Up a Trigger” on page 33.

3. Once the trigger has been set up, we can start the Analyzer and
view the captured traffic.

See “Starting the Analyzer” on page 36.

TCL Scripts The following TCL scripts correspond to the requirements of this
example:

• “Starting an Analyzer Session” on page 82

• “Downloading a Trigger Setup File to the Analyzer” on page 83

Establishing an Analyzer Session
As with the Exerciser, you must first establish a session at the client.

To start an Anaylzer session:

1 Start the PCI Express Protocol Analyzer software on your PC.

The software requires the network name or IP address of the
controller PC so that it can communicate with the controller PC.
The Select type of connection dialog box opens, which allows you to
specify that you want to establish a new session and enter the
network name (or IP address) of the controller PC.

Figure 20 Select type of connection Dialog Box
Agilent E2960 PCI Express, User’s Guide, November 2004 31

Running Your First Tests Analyzing the Communication to an Add-In Card
2 Select Connect to new session, enter the IP address or network
name of the controller PC under Server and then click Start.

The client requests a new connection on the controller PC. When the
connection has been established, the Select port to open dialog box
opens with the module and port numbers of the Serial I/O Modules.
Because we want to start a new session, we have to select one of the
ports that is ready.

Figure 21 Select port to open Dialog Box

3 Select the port for the Serial I/O Module to be used as Analyzer and
click Open port. The module numbers are on the display on the
front of the module.

The embedded software and FPGA contents are loaded to the Serial
I/O Module and the PCI Express Protocol Analyzer software starts.

Figure 22 PCI Express Protocol Analyzer Software

The session has now been established. You can see this in the status
bar at the bottom of the screen.
32 Agilent E2960 PCI Express, User’s Guide, November 2004

Analyzing the Communication to an Add-In Card Running Your First Tests
Setting Up a Trigger
At this point, both the Exerciser and Analyzer software should be
running on the client and sessions should be established to both Serial
I/O Modules involved in the test.

It is now necessary to program the Analyzer so that it triggers (starts
the capture of packets) upon the occurrence of a particular packet. To
keep the test simple, we will set up the Analyzer so that it triggers
upon the occurrence of a transaction layer packet (TLP). This us
allows us to use the Exerciser as it was previously set up.

To set up the Analyzer to trigger upon occurrence of a TLP packet:

1 Click Trigger Setup in the Capture menu.

The Trigger Setup dialog box opens, which is used for setting up
triggers.

2 On the left side in the Trigger Setup dialog box, you can see two
columns with Conditions and Configurations. If these are not
visible, check the corresponding items in the View menu.

The Trigger Setup dialog box should now appear as follows:

Figure 23 Trigger Setup Conditions
Agilent E2960 PCI Express, User’s Guide, November 2004 33

Running Your First Tests Analyzing the Communication to an Add-In Card
3 The Trigger Setup dialog box is set up as a series of IF conditions
that cause actions to be performed upon their occurrence.

To cause the Analyer to trigger upon occurrence of any TLP pattern,
in the Conditions box, open the TLP Patterns folder and drag
Any TLP into the condition field in the Start frame.

Figure 24 Setting the Condition

4 The Default Action defines what to do if the set conditions are not
met. Because we want to see all traffic that occurs, we set the
Default Action to Store Upstream, Store Downstream.

Figure 25 Setting the Default Action
34 Agilent E2960 PCI Express, User’s Guide, November 2004

Analyzing the Communication to an Add-In Card Running Your First Tests
5 For our test, we want the Analyzer to trigger upon occurrence of a
TLP. We also want the Analyzer to capture the TLP packet that
triggers the capture as well. We must therefore:

– Add a condition to the THEN statement.

– Set the first action to Default Action (to capture the triggering
packet).

– Set the second action to Trigger (to start the capture).

This is shown below:

Figure 26 Setting the Actions

NOTE Because we only have one IF condition, upon occurrence of the TLP,
we go to Start (the only condition block).

Add a condition

Set the action
Agilent E2960 PCI Express, User’s Guide, November 2004 35

Running Your First Tests Analyzing the Communication to an Add-In Card
The Analyzer appears as shown below:

Figure 27 Analyzer with Setup TLP Trigger

6 Click the Save icon, and give the trigger configuration file an
appropriate name (for example, “test_trigger_on_tlp.trg”).

7 Click OK to apply the trigger and close the Trigger Setup.

Starting the Analyzer
Once the trigger has been set up, we can start the Analyzer. When the
Analyzer detects a TLP packet, it will trigger, allowing us to view any
traffic that is captured.

To start the Analyzer:

1 In the Protocol Analyzer software, click Start in the Capture menu.

The Protocol Analyzer now tracks the packets sent through the bus.

2 In the Protocol Exerciser user interface, send a single data packet as
described in “Sending a Single Data Packet” on page 25.

If any TLPs are sent, the Protocol Analyzer will trigger and fill the
memory with traffic 25% before the trigger and 75% after the trigger.
36 Agilent E2960 PCI Express, User’s Guide, November 2004

Analyzing the Communication to an Add-In Card Running Your First Tests
You can now view the captured traffic in the Protocol Analyzer and
verify if the behavior of the PCI Express system or add-in card in
response to an incorrect LCRC is correct.

Figure 28 PCI Express Protocol Analyzer with Captured Traffic

In this case, the add-in card responds correctly to the error.

Memory Read with Incorrect

LCRC

Add-In card responds with a NAK

Exerciser send the packet with

correct LCRC

Add-In card responds with an

Ack

Sending a single packet is

completed
Agilent E2960 PCI Express, User’s Guide, November 2004 37

Running Your First Tests Validating the System
Validating the System

Validating and optimizing your system means exhaustive stress tests,
under maximum load, inserted errors and a range of different
conditions.

The Protocol Exerciser gives you full and fast control over your test,
from simple sequences to worst-case patterns, and, combined with the
Protocol Analyzer, deeper investigation and increased test coverage.

In this task, we will write data to the Exerciser’s data memory, write
this data to the PCI Express system’s memory, and then read the data
from the system memory and compare it with the data that was sent.
Comparing the outgoing and incoming data allows you to verify the
correct data transfer.

We will also use this task to check if the PCI Express system’s
DLL/Phy layer functions correctly by adding header errors to the
transferred packets.

We will also set up the Protocol Analyzer to capture the traffic
generated between the Protocol Exerciser and the system.

System Setup The following system setup is applied for basic platform testing;
especially for platforms that are not stable enough to support software
running on them.

The following system setup is required for this test:

• The Protocol Analyzer probe board is plugged into the PCI Express
system.

• The Protocol Exerciser probe board is plugged into the PCI Express
slot at the top of the probe board set up as Analyzer.
38 Agilent E2960 PCI Express, User’s Guide, November 2004

Validating the System Running Your First Tests
The system setup is as follows:

Figure 29 Protocol Exerciser and Analyzer Setup for Testing a System

How To Proceed This test is carried out as follows:

1. We have to establish an Exerciser session (described in
“Establishing an Exerciser Session” on page 19) and an Analyzer
session at the client.

See “Establishing an Analyzer Session” on page 31.

2. We set up and establish a PCI Express link between the Exerciser
and the add-in card.

See “Establishing a PCI Express Link” on page 23.

3. We set up a trigger on the Analyzer so that the Analyzer captures
traffic around a memory read request.

See “Setting Up the Trigger for the System Validation Test” on
page 40.

4. We write data to the Exerciser’s data memory for a data compare.

See “Writing Data to the Protocol Exerciser’s Data Memory” on
page 43.

5. We set up a block transfer that contains a memory write and a
memory read request with different behaviors and an included
error.

See “Setting Up and Running Block Transfers” on page 44

6. We view and analyze the results on the Analyzer’s user interface.

See “Viewing the Results Using the User Interface” on page 49

System Under Test

Priv ate
LAN

Client

Corporate
LAN

Controller PC

Analyzer

021011

Exerciser
Agilent E2960 PCI Express, User’s Guide, November 2004 39

Running Your First Tests Validating the System
TCL Scripts The following TCL scripts correspond to the requirements of this
example:

• “Writing Data to the Protocol Exerciser’s Data Memory” on
page 84

• “Setting Up and Running Block Transfers” on page 85

Setting Up the Trigger for the System
Validation Test
In this example, we will set up a memory write followed by a read to
the PCI Express system at 00FD0000 in the memory. We must first set
up the Analyzer so that it triggers upon a read to this memory area.

To set up the trigger:

1 In the Analyzer user interface, open the Trigger Setup dialog box.

2 Under Conditions, open the TLP Patterns folder, select
Memory Read 32b, and click Copy.

The condition is saved as a copy under User Patterns.

Figure 30 Trigger Setup Dialog Box
40 Agilent E2960 PCI Express, User’s Guide, November 2004

Validating the System Running Your First Tests
3 Double-click the copied condition to edit it (or click Edit).

The Edit Condition dialog box opens.

Figure 31 Edit Condition dialog box

4 Set the format to Hex (set with the button next to the field) and set
Address to 00FDXXXX.

When this condition is used, the Analyzer triggers at any 32-bit read
access to the range from 00FD0000 to 00FDFFFF.

Figure 32 Edit a Condition

5 Close the Edit Condition dialog box and drag the modified
condition into the Condition field.

6 Set the Default Action to Store Upstream, Store Downstream.
Agilent E2960 PCI Express, User’s Guide, November 2004 41

Running Your First Tests Validating the System
7 Add an action by clicking Add next to the action field and set the
first action field to Default Action and the second to Trigger.

When any 32-bit memory read request to the defined address range
is detected, the Analyzer will trigger.

The Trigger Setup should now appear as follows:

Figure 33 Trigger Setup for the System Validation Test

8 Save the trigger configuration, for example, to
“test_trigger_on_readmem32.trg”.

9 Apply the trigger and close the Trigger Setup.

10 In the User Interface, select Run in the Capture menu to start the
Analyzer.

The Protocol Analyzer now tracks the packets sent through the bus.
If a 32-bit memory read request at address 00FDXXXX is sent, the
Protocol Analyzer triggers and records the traffic in its trace
memory.

Condition field

Action field
42 Agilent E2960 PCI Express, User’s Guide, November 2004

Validating the System Running Your First Tests
Writing Data to the Protocol Exerciser’s
Data Memory
To verify that the data read and write between the Exerciser and the
PCI Express add-in card works correctly, the data memory must be
filled with defined data.

To write data to the exerciser’s data memory:

1 Click the Data Memory icon.

2 For example, fill the Data Memory from 0000 0000 to 0000 00FF with
human-readable data.

Figure 34 Data Memory Entry

TIP You can also export data from or import data into the Data Memory
by selecting Export or Import in the File menu.
Agilent E2960 PCI Express, User’s Guide, November 2004 43

Running Your First Tests Validating the System
Setting Up and Running Block Transfers
This section describes how you set up block transfers in the user
interface.

To set up block transfers:

1 In the PCI Express Protocol Exerciser software, click the Send
Block Transfers icon.

The Send Block Transfers card opens with the Hardware
Channel A tab on top.

2 Click the Insert New Request icon.

The Select a Template dialog box opens.

Figure 35 Select a Template Dialog Box

3 Select the Memory Write 32 template and click OK.

A line describing the memory write is added to the Request and one
request behavior.

4 Set the address in the PCI Express system memory to be used for
the write.

In this test, address 00FD 0000 is used. If your PCI Express system
does not support this address, change the address as necessary.

Note that you also have to change the trigger set up in “Setting Up
the Trigger for the System Validation Test” on page 40.
44 Agilent E2960 PCI Express, User’s Guide, November 2004

Validating the System Running Your First Tests
5 Set the address and length of the data to be used from the Data
Memory.

The following values are used in this example:

– At: 000000

– Length: 0000FF

Figure 36 Memory Write Settings

6 Select the Memory Read 32 template and click OK.

A line describing the memory read is added to the Request.

7 Set the memory address of the PCI Express system from which the
data should be read to 00FD 0000.
Agilent E2960 PCI Express, User’s Guide, November 2004 45

Running Your First Tests Validating the System
8 To make the data compare possible, address and length of the
location in the Data Memory to which the data from the PCI
Express system should be written must be the same as for the read
request.

In this case:

– At: 000000

– Length: 0000FF

Figure 37 Memory Read Settings
46 Agilent E2960 PCI Express, User’s Guide, November 2004

Validating the System Running Your First Tests
9 Click the Insert New Behavior icon to insert four Request
Behaviors.

10 Change the Chunk Lengths of the payload to 17, 13, 23, and 14, for
example.

11 Change some of the other packet parameters to test how the PCI
Express system reacts to faulty packets (for example, if Payload
Size, Disparity, or LCRC are incorrect).

Figure 38 Block Transfers with different Lengths of Payload

12 Establish the link:

– In the General tab, check the desired link width.

– Select Platform for the DUT Connectivity and To Upstream for
the Session Type.

– Initiate link training by clicking Link Up in the Action menu.
Agilent E2960 PCI Express, User’s Guide, November 2004 47

Running Your First Tests Validating the System
The link is established if Link State is Active.

Figure 39 Active Link State

13 Enable the data compare:

– Open the Data Memory and click the Memory Compare tab.

– Check Enable Memory Compare.

When running the block transfer, the Exerciser will compare the
original data with the data read from the PCI Express system and
give you information about error address, the expected data and the
actual data.

14 Click Send Block Transfer in the Action menu to send the block.
48 Agilent E2960 PCI Express, User’s Guide, November 2004

Validating the System Running Your First Tests
Viewing the Results Using the User
Interface
Once the trigger has been set up, we can start the Analyzer. When the
Analyzer detects a 32-bit memory read request, it will trigger, allowing
us to view any traffic that is captured.

To start the Analyzer:

1 In the Protocol Analyzer software, click Start in the Capture menu.

The Protocol Analyzer now tracks the packets sent through the bus.

2 In the Protocol Exerciser user interface, send the block transfer as
described in “Setting Up and Running Block Transfers” on
page 44.

You can now view the captured traffic in the Protocol Analyzer and
verify if the behavior of the PCI Express system in response to the
memory write and memory read requests and the included error
(incorrect LCRC) is correct.

Figure 40 Analyzer with Captured Memory Read Requests

Trigger Point

Memory Read

Request splitted

into the different

chunk lengths of

payload sent

without an error
Agilent E2960 PCI Express, User’s Guide, November 2004 49

Running Your First Tests Validating the System
Figure 41 Protocol Analyzer with Captured Memory Write Requests

As you can see, the PCI Express system responds correctly.

Exerciser sends the

Memory Write

Request with

incorrect LCRC

PCI Express system

responds with a Nak

on the last correct

packet

Exerciser sends the

packets with correct

LCRC
50 Agilent E2960 PCI Express, User’s Guide, November 2004

Validating the System Running Your First Tests
Additionally, in the Protocol Exerciser software, open the Data
Memory and click the Memory Compare tab.

The Exerciser compares the original data with the data read from the
PCI Express system and shows you the error address, the expected
data and the actual data. See the figure below for an example of an
incorrect data transfer.

Figure 42 Memory Compare with Detected Error
Agilent E2960 PCI Express, User’s Guide, November 2004 51

Running Your First Tests Validating the System
What Happens at the Exerciser when
transferring a Block?
The Exerciser also operates as a requester for this task. The following
figure illustrates the Exerciser components involved.

Figure 43 Exerciser as Requester (transferring a block)

The desired requests and request behaviors are written to the Block
Memory (BM) and Request Behavior Memory (RBM) for a particular
Hardware Channel. The required data is written to the Data Memory.

When you transfer a block, the requests are processed one at a time,
taking the necessary data from the Data Memory, and according to the
current request behavior.

Block transfers also use the Pending Request Map (PRM) to keep track
of open responses and which memory areas they should access. For
block transfers, the received completions are not stored.

See “Exerciser as Requester” on page 62 for a detailed description of
how the Exerciser acts as a requester.

Transaction Layer

DLL / Phy. Layer

Payload

Packet Packet

Hardware
Channel A

Hardware
Channel A

Data Memory

PRM

Trans. 1

Trans.2

. . .

Trans. n

TX RX

Algorithmic Data
Generator

SI Compl. Mem.

Compl. 1

Compl. 2

Compl. n

Hardware
Channel A

Req. Beh.
Memory

Behavior 1

Behavior 2

. . .

Behavior n

Block
Memory
Request

Request 2

. . .

Request n

Payload

SP Mem.

Trans. 1

Behavior 1

Data
52 Agilent E2960 PCI Express, User’s Guide, November 2004

Bringing Up and Debugging a PCI Express Add-In Card Running Your First Tests
Bringing Up and Debugging a
PCI Express Add-In Card

In the early stages of the bring up and debug of your prototype, you
need to assess its behavior and root out the causes of errors and
performance problems.

The Protocol Exerciser and the Protocol Analyzer for PCI Express
helps you to verify the physical and data link layer capabilities of a PCI
Express add-in card as well to simulate such add-in cards on the
transaction layer.

Task This test provides an example to check if the PCI Express add-in card’s
Physical layer functions correctly by modifying the Protocol
Exerciser’s link settings. After the link setting scrambling has been
disabled, link training will be performed to see if the add-in card
changes its scrambling mode as well.

The Protocol Analyzer is set up to capture the traffic sent between the
Protocol Exerciser and the PCI Express add-in card.

System Setup The following system setup is required for this test:

• The add-in card to be tested is plugged into the PCI Express slot at
the top of the probe board set up as Analyzer.

• The Analyzer probe board is plugged into the PCI Express slot at the
top of the probe board set up as Exerciser.

• An external ATX power supply is connected to one probe board. The
power jumper on the probe board should be set to Ext (instead sys).

The external power supply is required to power the add-in card.
Alternatively, you could plug the probe board into a powered PCI
Express slot and set the jumper to sys.
Agilent E2960 PCI Express, User’s Guide, November 2004 53

Running Your First Tests Bringing Up and Debugging a PCI Express Add-In Card
The system setup is as follows:

Figure 44 Protocol Exerciser and Analyzer Setup for Testing a PCI Express Add-In Card

How to Proceed This test is carried out as follows:

1. We have to establish an Exerciser session (described in
“Establishing an Exerciser Session” on page 19) and an Analyzer
session at the client.

See “Establishing an Analyzer Session” on page 31.

2. We set up and establish a PCI Express link between the Exerciser
and the add-in card.

See “Establishing a PCI Express Link” on page 23.

3. We set up a trigger on the Analyzer so that the Analyzer captures
traffic around a specific link state.

See “Setting Up a Trigger” on page 33.

4. We set up the Exerciser with disabled scrambling.

See “Modifying Specific Link Settings” on page 59.

5. We start the Analyzer and view the captured traffic.

See “Running the Test and Viewing the Results for the Bring Up
and Debug Test” on page 60.

TCL Script The following TCL script corresponds to the requirements of this
example:

• “Modifying Link Settings on the Exerciser” on page 89

021011

Device Under Test

LA
N

Analyzer

Exerciser

External Power
Supply
54 Agilent E2960 PCI Express, User’s Guide, November 2004

Bringing Up and Debugging a PCI Express Add-In Card Running Your First Tests
Setting Up the Trigger for the Bring Up and
Debug Test
In this example, we initiate link training with disabled scrambling and
check if the PCI Express add-in card disables scrambling as well.

In the user interface, we must first set up the Analyzer so that it
triggers upon a link state with disabled scrambling.

To set up the trigger with the user interface:

1 In the Analyzer user interface, open the Trigger Setup dialog box.

2 Under Conditions, open the Link Patterns folder, select TS1, and
click Copy.

The condition is saved as a copy under User Patterns.

Figure 45 Trigger Setup Dialog Box

We have to define a condition with disabled scrambling and use this
as the trigger. We can do this by creating and editing a copy of a
condition and loading this new condition.
Agilent E2960 PCI Express, User’s Guide, November 2004 55

Running Your First Tests Bringing Up and Debugging a PCI Express Add-In Card
3 Double-click the copied condition to edit it.

The Edit Condition dialog box opens.

Figure 46 Edit Condition dialog box

4 Set Training Control to Disable Scrambling.

Figure 47 Edit a Condition

5 Close the Edit Condition dialog box and drag the modified
condition into the Condition field.

6 Set the Default Action to Store Upstream, Store Downstream.
56 Agilent E2960 PCI Express, User’s Guide, November 2004

Bringing Up and Debugging a PCI Express Add-In Card Running Your First Tests
7 Add an action by clicking Add next to the condition field and set the
first action field to Default Action and the second to Trigger.

The Analyzer is now set up to view the link training in both
directions (upstream and downstream), and to store 25% of the
traffic that occurs before the trigger point and 75% after the trigger
point.

The Trigger Setup should now appear as follows:

Figure 48 Trigger Setup for the Bring Up and Debug Test

8 Save the trigger configuration, for example, to
“test_trigger_on_disscrambler.trg”.

9 Apply the trigger and close the Trigger Setup.

10 In the User Interface, select Run in the Capture menu to start the
Analyzer.

The Protocol Analyzer now tracks the traffic sent in both directions
through the bus. If any TS1 with disabled scrambling is detected, the
Analyzer triggers and stores 25% of the link states before the trigger
point and 75% after the trigger point.
Agilent E2960 PCI Express, User’s Guide, November 2004 57

Running Your First Tests Bringing Up and Debugging a PCI Express Add-In Card
Disabling Scrambling an the Analyzer
To avoid that the Analyzer shows all-red packets after starting the link
training, you can set the analyzer to disable the scrambling as well:

1 Click Hardware Setup in the Capture menu.

This opens the Hardware Setup dialog box with the General tab on
top.

Figure 49 Hardware Setup Dialog Box

2 Select the Up/Downstream tab and set Descrambler to Disabled.

Figure 50 Hardware Setup Dialog Box with Disabled Descrambler
58 Agilent E2960 PCI Express, User’s Guide, November 2004

Bringing Up and Debugging a PCI Express Add-In Card Running Your First Tests
Modifying Specific Link Settings
On the Protocol Exerciser, several link settings can be modified to
analyze the physical layer capability of the PCI Express add-in card.

In this example, the scrambler will be disabled.

To disable the scrambler:

1 Select the General icon on the Exerciser.

2 Disable the Scrambler.

This forces the Protocol Exerciser to disable the scrambler. As soon
as another device requests the disabling, the Exerciser reacts
correctly.

3 Because an add-in card is tested, select Bench for the DUT
Connectivity.

4 Apply the settings.

The Link Settings should now appear as follows:

Figure 51 Modified Link Settings

NOTE Do not initiate the link training yet. We will do this in “Running the
Test and Viewing the Results for the Bring Up and Debug Test” on
page 60.
Agilent E2960 PCI Express, User’s Guide, November 2004 59

Running Your First Tests Bringing Up and Debugging a PCI Express Add-In Card
Running the Test and Viewing the Results
for the Bring Up and Debug Test
The Analyzer is set up to trigger on the first link state with disabled
scrambling during the link training.

To run the test and view the results:

1 In the Protocol Analyzer software, click Start in the Capture menu.

The Protocol Analyzer now tracks the link states sent through the
bus.

2 In the Protocol Exerciser user interface, initiate the link training by
clicking Link Up in the Action menu.

Once the link has been initiated, you can open the Protocol Analyzer to
view the captured traffic captured around the first link state with
disabled scrambling.

Figure 52 Protocol Analyzer with Captured Link States

As you can see, the PCI Express add-in card responds correctly.

Exerciser performs

link training with

disabled scrambling

The PCI Express

add-in card responds

with disabled

scrambling

Trigger Point
60 Agilent E2960 PCI Express, User’s Guide, November 2004

Exerciser Architecture Overview

This chapter provides in-depth information into the Exerciser
architecture. The information here is essential for understanding the
internal structures of the Serial I/O Modules when they are set up as
Exercisers.

NOTE The Analyzer architecture is simple and is therefore not explained in
detail in this document.

This chapter explains how the Protocol Exerciser works as:

• A requester

As requester, the Exerciser requests data to be tranferred to or from
the add-in card or PCI Express system under test and then waits for
the completion.

• A completer

As completer, the Exerciser responds to requests from the add-in
card or PCI Express system under test.

Additionally, a short functional description of all Exerciser
components is provided.

NOTE Typically, the Exerciser will function both as a requester and
completer in any test. This depends on the device or system being
tested.
Agilent E2960 PCI Express, User’s Guide, November 2004 61

Exerciser Architecture Overview Exerciser as Requester
Exerciser as Requester

As requester, the Exerciser requests the add-in card or PCI Express
system under test to perform certain actions (for example, to read to
or write from its memory). The following diagram illustrates what
typically happens at the Exerciser in this case.

Figure 53 Exerciser as Requester

As indicated in this figure, there are three hardware channels (A, B,
and C). Each of these hardware channels has its own Block Memory
and Requester Behavior Memory (Req. Beh. Memory).

NO TE The Request Behavior Memory acts as a loop. It contains any number
of request behaviors that it uses progressively. There is no direct
correlation between the number of entries in a hardware channel’s
Request Behavior Memory and the number of entries in its Block
Memory.

Transaction Layer

DLL / Phy. Layer

Payload

Packet Packet

Hardware
Channel A

Hardware
Channel A

Data Memory

PRM

Trans. 1

Trans.2

. . .

Trans. n

TX RX

Algorithmic Data
Generator

Hardware
Channel A

Req. Beh.
Memory

Behavior 1

Behavior 2

. . .

Behavior n

Block
Memory
Request

Request 2

. . .

Request n

Payload

SP Mem.

Trans. 1

Behavior 1

Data

SI Compl. Mem.

Compl. 1

Compl. 2

Compl. n
62 Agilent E2960 PCI Express, User’s Guide, November 2004

Exerciser as Requester Exerciser Architecture Overview
The Exerciser’s workflow as requester for a Block Transfer is as
follows.

1. The requests to be carried out are written to one of the three
Hardware Channel’s Block Memories.

User Interface: Send Block Transfers page, Request section

Programming: Exerciser’s Block Setup functions

2. The data memory is filled with data as necessary.

User Interface: Data Memory page

Programming: Exerciser’s Data Memory Access functions

3. The required behaviors are written to the hardware channel’s
Requester Behavior Memory.

User Interface: Send Block Transfers page, Request Behavior
section

Programming: Exerciser’s Behavior Setup functions

4. The block transfer is started.

User Interface: Action menu, Run item

Programming: Exerciser’s Run Control functions

5. When the block transfer is started, the packets are assembled on
the Transaction Layer according to the current request, the current
entry in the behavior memory, and any data required from the Data
Memory or the Algorithmic Data Generator (as defined in the
request).

For each request that expects a response (for example, for a data
read), an entry is written to the Pending Request Map (PRM). This
entry contains the memory location for any data to be returned.
Note that no new requests are sent while the Pending Request Map
is full (because too many requests are pending).

The PRM has either 32 or 256 entries, depending on the extended
tag mode (for more information, see the PCI Express Specification,
Extended Tag Field Enable bit, section 7.8.4).

This is done internally and requires no additional effort.

6. The packets are then sent to the data link layer (DLL) for
transmission. The data link layer adds the sequence number, LCRC
and framing to the packets and then sends them.
Agilent E2960 PCI Express, User’s Guide, November 2004 63

Exerciser Architecture Overview Exerciser as Requester
If the current behavior specifies that the packet is to be sent with
an error that forces a NAK (for example, wrong LCRC), the packet
is sent once with the error and when the add-in card or PCI
Express system under test returns a NAK (negative acknowledge),
it is sent without the error. Other errors, like nullified TLP or
wrong length, are not checked in the DLL and therefore do not
result in an automatic (correct) replay.

This is done internally and requires no additional effort.

7. If the request requires a response, when the response is returned,
the entry is looked up in the Pending Requests Map (PRM). Any
returned data is written to the memory location or the Comparison
Algorithm (specified when the request was created).

This is done internally and requires no external effort.

NO TE If the add-in card or PCI Express system under test does not
respond to a request, the entry in the PRM is not removed. If too
many requests are ignored (because the add-in card or PCI Express
system under test cannot handle certain errors added to the
packets), the PRM will fill up, and no further requests will be
allowed. In such a case, you have to retrain the link to clear the
PRM.

The workflow for Send Single Packet differs from the above as follows:

• The requests and behaviors for the transactions are written to the
Single Packet Memory (SP Memory). The data can be written to
either the Single Packet Memory or the Data Memory (as configured
in the request).

• When a response containing data is returned, it can be written to
either the Single Packet Memory or the Data Memory (as configured
in the request).

• Received completions are written to the Send Immediate
Completion memory (SI Compl. Mem.) instead of being discarded.
This gives you the possibility of inspecting the packets’ headers.

User Interface: Send Single Packet page

Programming: Exerciser’s SI Control (Send Immediate) functions
64 Agilent E2960 PCI Express, User’s Guide, November 2004

Exerciser as Completer Exerciser Architecture Overview
Exerciser as Completer

When the Exerciser acts as completer, it responds to requests sent by
the add-in card or PCI Express system under test (for example, a
memory read). The following figure illustrates the various components
of an Exerciser in this case.

Figure 54 Exerciser as Completer

As indicated in this figure, there are two queues. Both of these queues
have its own Completion Memory (Comp. Memory) and Completion
Behavior Memory (Comp. Beh. Memory). The Queue used depends on
the settings in the Decoder.

NOTE A Queue’s Completion Behavior Memory acts as a loop. It contains any
number of completion behaviors that it uses progressively. There is no
direct correlation between the number of entries in a Queue’s
Completion Behavior Memory and the number of entries in its
Completion Memory.

Transaction Layer

Hardware
Channel A

Queue 1

Comp. Beh.
Memory

Behavior 1

Behavior 2

. . .

Behavior n

Comp.
Memory
Compl. 1

Compl. 2

. . .

Compl. n

DLL / Phy. Layer

Payload

Data Memory

TX RX

Decoder

BAR 0

BAR 1

BAR 2

BAR 3

BAR 4

BAR 5

ExpROM

Response
Manager

Packet

Config
Accesses

Algorithmic Data
Generator

Packet
Agilent E2960 PCI Express, User’s Guide, November 2004 65

Exerciser Architecture Overview Exerciser as Completer
The Exerciser’s workflow as completer is as follows:

1. The Decoder is set up as necessary to configure access to the I/O
area, data memory, or data generator.

If no BIOS is available, the Decoder has to be configured by the
user.

User Interface: Decoder page

Programming: Exerciser’s Configuration Space Control functions

2. The desired completion behaviors for each Queue are written to the
corresponding Completion Behavior Memory.

User Interface: Completion page

Programming: Exerciser’s Behavior Setup functions

3. The Exerciser receives a request from the add-in card or PCI
Express system under test.

4. If the request requires access to the configuration space, it is
passed to the embedded software running on the Serial I/O Module.

If the request requires access to the memory, the memory area to
be accessed is defined according to the BARs and the expansion
ROM.

This is done internally and requires no additional effort.

5. The Response Manager writes the completion necessary for
responding to the request in the Completion Memory of the
corresponding Queue.

This is done internally and requires no additional effort.

6. The packets are assembled on the Transaction Layer according to
the completion and the current behavior and then passed to the
data link layer for sending.

This is done internally and requires no additional effort.

7. If the current behavior specifies that the packet is to be sent with
an error that forces a NAK (for example, wrong LCRC), tha packet
is sent once with the error and a NAK (negative acknowledge) is
returned, it is sent without the error.

This is done internally and requires no additional effort.
66 Agilent E2960 PCI Express, User’s Guide, November 2004

Exerciser Components Exerciser Architecture Overview
Exerciser Components

As described in “Exerciser as Requester” on page 62 and “Exerciser
as Completer” on page 65, the Exerciser consists of various
components that work together. This section provides an functional
overview of these elements (in alphabetical order).

Algorithmic Data Generator The algorithmic data generator is used to generate semi-random data.
This data is written to the add-in card or PCI Express system under
test. When it is read, the returned data is compared to the expected
data. Thus, large memory access tests can be carried out, despite the
memory restrictions of the Serial I/O Modules.

Block Memory The block memory is used to hold the information necessary to build
up a request transaction: it holds for example the transaction type, a
pointer to the data memory for the data to be included, and the
information for the bus to be used.

Completion Behavior Memory The completion behavior memory contains a series of entries that
describe how the completions are to be assembled (for example,
maximum payload length, number of times the transaction is to be
repeated without incrementing the transaction number, or any errors
that should be included when the packet is assembled.

Completion Memory Similar to the block memory, the response memory is a FIFO list of the
completions to be processed for a particular queue. These responses
are used to generate the payloads and packets to be sent to the
requester.

Data Memory The data memory is a 2-MByte volatile memory space on the Serial I/O
Modules that is used to temporarily store data. This data can either be
used for writes to or reads from a device.

The data in the data memory can be imported from files, or exported
to files. There are no special formatting requirements on this data.

Accesses to memory areas up to 8 EBytes (2^63 bytes) can be set up in
the decoder. The available data memory is wrapped around to supply
this amount of memory space.

Decoder The decoder is used to configure the access to the Exerciser’s
configuration space (BAR0 – BAR5, expansion ROM). It provides the
necessary data locations for accesses to the configuration space.
Agilent E2960 PCI Express, User’s Guide, November 2004 67

Exerciser Architecture Overview Exerciser Components
Hardware Channels The three hardware channels use their own blocks in the Serial I/O
Module’s memory to manage the channel’s requests (the Request
Block Memory) and request behaviors (Behavior Memory). The
hardware channels are further divided into Virtual Channels.

Pending Request Map When the Exerciser sends a request to which it expects a response (for
example, a memory read), an entry is written to the pending request
map to keep track of the responses to be expected (so that the
Exerciser can handle them as necessary).

Queue Two queues are implemented for handling responses to requests.
These queues both have a block memory (for holding the requests) and
a request behavior memory (for describing how the requests are to be
processed).

It is recommended to use one queue for handling the “normal” traffic
and to keep one queue free to handle high-priority traffic.

Request Behavior Memory The request behavior memory contains a series of entries that
describe how the requests are to be assembled (for example, maximum
payload length, number of times the transaction is to be repeated
without incrementing the transaction number, or any errors that
should be included when the packet is assembled.

Request Memory The request memory is a FIFO list of the requests to be processed for a
particular hardware channel. These requests are used to generate the
payloads and packets to be sent.

Single Packet Memory The single packet memory is almost identical to the memory for a
hardware channel: besides a Request Memory and Request Behavior
Memory, it also contains its own Data Memory.

Virtual Channels The Exerciser has three physical hardware channels but has been
designed to emulate up to eight virtual channels. Hardware channel A
and B are mapped directly to virtual channels 0 and 1, respectively.
Virtual channels 2 – 7 are emulated on hardware channel C.
68 Agilent E2960 PCI Express, User’s Guide, November 2004

How to Program the Exerciser and
Analyzer

The following sections provide you with some basic information that
helps you familiarize yourself with developing programs for the
Agilent Protocol Exerciser and Protocol Analyzer:

• “Using the DCOM API” on page 70

Provides a class overview of the DCOM API and describes how the
classes and interfaces interact. See the E2960 PCI Express Series
API Reference in the online Help for details.

• “Controlling the Exerciser from a SUT” on page 73

Provides the information you need when developing a program for
controlling the Exerciser over the PCI Express bus from the system
under test.
Agilent E2960 PCI Express, User’s Guide, November 2004 69

How to Program the Exerciser and Analyzer Using the DCOM API
Using the DCOM API

The following figure provides a short overview of how the PCI Express
classes and interfaces are related.

Figure 55 Overview of PCI Express Classes

The Resource Manager (AgtResourceManager) runs on the controller
PC. The Session Manager (IAgtSessionManager) and Module Manager
(IAgtModuleManager) are interfaces of the Resource Manager.

The Session Manager manages all sessions (number of sessions and
their types), the Module Manager manages the hardware (module
numbers, module types).

 AgtResourceManager

IAgtModuleManager IAgtSessionManager

IAgtPortSelector

IAgtPCIEExerciser IAgtPCIEExerciserEvents

Exerciser Session

IAgtPCIEControl

Analyzer Session

IAgtPCIEAnalyzer IAgtPCIEAnalyzerEvents

IAgtPCIEControl

Session

IAgtTestSession

C
o

n
tr

o
lle

r
P

C
C

lie
n

t

70 Agilent E2960 PCI Express, User’s Guide, November 2004

Using the DCOM API How to Program the Exerciser and Analyzer
Opening a New Session
You would use the following commands to open a new session from a
DCOM-based program. Use this description in conjunction with the
E2960 PCI Express Series API Reference in the online Help to get
started in creating DCOM-based programs.

• Create an instance of the Test Session to the controller PC:

#define HOSTNAME L"localhost"

COSERVERINFO serverInfo = {0, HOSTNAME, NULL, 0};

MULTI_QI mqi;

mqi.hr = 0;

mqi.pItf = NULL;

mqi.pIID = &(__uuidof(IAgtTestSession));

HRESULT hRes =

HRESULT hRes = CoCreateInstanceEx(__uuidof(AgtTestSession), NULL,

CLSCTX_REMOTE_SERVER, &serverInfo, 1, &mqi);

 if (FAILED(hRes))

 {_com_error e(hRes);

 throw e;

 }

}

IAgtTestSessionPtr pTestSession = mqi.pItf;

• Open a session with the necessary configuration:

long sessionHandle =

pTestSession->OpenSession("PCIEExerciserToDownstream",

AGT_SESSION_ONLINE);

• Get the Port Selector from the Test Session.

IAgtPortSelectorPtr pPortSelector =

pTestSession->GetInterfaceByName("AgtPortSelector");

• Add a port to the session:

long portHandle;

pPortSelector->AddPort (101, 1, portHandle);

• Get the session’s Exerciser interface:

IAgtPCIEExerciserPtr pExerciser =

pTestSession->GetInterfaceByName("AgtPCIEExerciser");

• And when you are finished, close the session:

pTestSession->CloseSession()
Agilent E2960 PCI Express, User’s Guide, November 2004 71

How to Program the Exerciser and Analyzer Using the DCOM API
Accessing a Running Session
You would use the following commands to access running sessions
from a DCOM-based program. Use this description in conjunction with
the E2960 PCI Express Series API Reference in the online Help to get
started in creating DCOM-based programs.

• Create an instance of the Session Manager to the controller PC:

#define HOSTNAME L"localhost"

AGTRESOURCEMANAGERLib::IAgtSessionManagerPtr pSessionManager;

COSERVERINFO serverInfo = {0, HOSTNAME, NULL, 0};

MULTI_QI mqi;

mqi.hr = 0;

mqi.pItf = NULL;

mqi.pIID = &(__uuidof(AgtSessionManager));

HRESULT hRes =

CoCreateInstanceEx(__uuidof(AgtSessionManager),

NULL, CLSCTX_REMOTE_SERVER, &serverInfo, 1, &mqi);

if (FAILED(hRes))

{ _com_error e(hRes);

throw e;

}

pSessionManager = mqi.pItf;

• Use the instance to get a list of the handles of the open sessions:

long count;

SAFEARRAY *psa;

psa = SafeArrayCreateVector (VT_UI4,0,0);

pSessionManager->ListOpenSessions(&count,&psa);

• Check the session type using the session handles:

BSTR test = pSessionManager->GetSessionType(1);

• If the session type corresponds to the required session, use the
session handle to get the Test Session:

IAgtTestSessionPtr pTestSession =

pSessionManager->GetSessionInterface(1);

• Get the Exerciser interface:

IAgtPCIEExerciserPtr pExerciser =

ppSessionInterface->GetInterfaceByName("AgtPCIEExerciser");

• And when you are finished, close the session:

ppSessionInterface->CloseSession()
72 Agilent E2960 PCI Express, User’s Guide, November 2004

Controlling the Exerciser from a SUT How to Program the Exerciser and Analyzer
Controlling the Exerciser from a
SUT

The Protocol Exerciser features an in-system PCI Express port that
can be used for controlling its behavior over the PCI Express bus. This
allows programs running on the system under test (SUT) to request
actions from the Exerciser over PCI Express, thus eliminating the need
for a separate LAN connection on the SUT.

The requests are sent as PCI Express packets that contain Exerciser
commands or requests as data. The Exerciser can then carry out the
necessary actions and send replies to the requester using PCI Express.

This type of setup is required if you have a test program that runs on a
system under test (SUT) that requests actions from the Exerciser.

The following figure shows the software structure with the PCIe port
API:

Figure 56 Software Structure for Testing with a System Under Test

Differences between the PCIe Port API and
DCOM API
There are several differences in how the PCIe port API is used
compared to the DCOM API:

• The PCIe port API does not use the COM interface.

Therefore, the COM initialization calls (CoComInitialize, etc.) that
are required with the DCOM API are not required.

Client PC

User Program
(C++, C#)

Exerciser
Software

tcl
Script

W
ra

pp
er

C
O

M
 /

D
C

O
M

 A
P

I

SUTSerial I/O ModuleController PC

C
O

M
 /

D
C

O
M

 A
P

I

C
om

m
. L

ay
er

Embedded
Software

Hardware

Probe

User Program
(C++, C#)

PCIe Port API

Driver

LA
N

PCI
Express

LA
N

Agilent E2960 PCI Express, User’s Guide, November 2004 73

How to Program the Exerciser and Analyzer Controlling the Exerciser from a SUT
• No configuration of the session is possible over the PCIe port API.

The System I/O Module must already be set up as Exerciser, the
session must be started, the required port(s) must be added, and
the link must be brought up before the PCIe port API can be used.

• The system performance is generally slower than if the Exerciser is
controlled over LAN.

This is due to the fact that the PCI Express bus has additional
traffic for the communication with the requester.

• Testing on the DLL/Phy layer cannot be performed.

Any manipulation of the link causes the PCIe port API to lose the
connection to the requester.

• Event notifications are not supported by the PCIe port API.

• The port handle must be obtained over the port’s physical address.

Most DCOM API functions use the port handle to reference to a
particular port within a session. The port handle is typically derived
from a call to PortSelector->AddPort. The PCIe port API provides a
new function to get the port handle:

ConnectPort(physicalAddress, &porthandle)

Working with the PCIe Port API
The PCIe port API provides two classes required for sending
commands to an Exerciser over the in-system port:

• CAgtPortSelector

Contains functions for opening and closing the connection to PCI
driver.

• CAgtPCIEExerciser

Provides all exerciser API functions needed for communicating with
the Serial I/O Modules.

These modules are described in more detail below.

CAgtPortSelector This class is required to establish a connection to the in-system port
on the Serial I/O Module. It is used to get the port handle of the in-
system port, which is required when calling any CAgtPCIEExerciser
functions.

CAgtPCIEExerciser This class contains the necessary exerciser API functions for
requesting actions from the Serial I/O Modules.
74 Agilent E2960 PCI Express, User’s Guide, November 2004

Controlling the Exerciser from a SUT How to Program the Exerciser and Analyzer
Example of Using the In-System Port
The following example shows you how to look for an Exerciser from
the PCI Express bus. It requires that the corresponding Serial I/O
Module has an Exerciser personality and that the link is up.

// Source code from the intro sample
#include "AgtPCIEExerciser.h"
#include "AgtPortSelector.h"

#include <iostream>
using namespace std;

void main(int argc, char* argv[])
{
 CAgtPortSelector *myPortSelector=NULL; // Connection handling
 CAgtPCIEExerciser *myExerciser=NULL; // Exerciser programming

 cout << "Starting main" << std::endl;

 try

// All error handling is done via exceptions of CAgtException
 {

// Create (the one and only) PortSelector instance.
// This class provides functionality for
// handling the connection to the PCIE driver.
myPortSelector = new CAgtPortSelector;

// Create (the one and only) Exerciser instance.
// This class contains contains all
// functions for programming the exerciser.
myExerciser = new CAgtPCIEExerciser;

UInt16 deviceId=AGT_INVALID_DEVID;
// bus- (bits 15:8) slot- (7:4) and function (3:0) number

// Get deviceId for first (parameter index=0) card found.
// This looks for E2960 probeboards found on the PCIE bus.
// To enumerate all cards in the system,
you can call this function repeatedly with index=0,1,2,3,...
// until the returned deviceId = AGT_INVALID_DEVID.
myPortSelector->DeviceIdGet(0,&deviceId);
if (deviceId==AGT_INVALID_DEVID)
{
 cerr<<"No board found, exiting."<<endl;
 delete myExerciser;
 delete myPortSelector;
 return;
}

hex(cout);
cout << "Found board at index 0, devid 0x" << deviceId << endl;
Agilent E2960 PCI Express, User’s Guide, November 2004 75

How to Program the Exerciser and Analyzer Controlling the Exerciser from a SUT
// Handle to device
AgtPortHandleT myHandle=AGT_INVALID_PORTHANDLE;

// Open connection to found board
myPortSelector->ConnectPort(deviceId,&myHandle);
cout << "Connection established." << endl;

// Do something with myHandle here
UInt32 val=0;
myExerciser->ConfRegRead(myHandle,0,&val);
cout << "Read " <<val<< " from configspace"<< endl;

// Close connection to card
myPortSelector->DisconnectPort(myHandle);
cout << "Connection closed." << endl;

delete myExerciser;
delete myPortSelector;

 }
 catch (CAgtException &e)
 {

// API error
cerr << e << endl;

 }
 catch (...)
 {

// catch all other errors here
 }
}

76 Agilent E2960 PCI Express, User’s Guide, November 2004

Appendix

This chapter contains the tcl scripts that correspond with the actions
carried out in the user interface. The following scripts are available:

• “Starting an Exerciser Session” on page 77

• “Establishing a Link” on page 79

• “Sending a Single Packet” on page 80

• “Starting an Analyzer Session” on page 82

• “Downloading a Trigger Setup File to the Analyzer” on page 83

• “Writing Data to the Protocol Exerciser’s Data Memory” on
page 84

• “Setting Up and Running Block Transfers” on page 85

• “Modifying Link Settings on the Exerciser” on page 89

Starting an Exerciser Session

The following TCL script shows you how to start an Exerciser session
for upstream testing (for example, to a PCI Express system).

It requires as input parameter the module and port number of the
Serial I/O Module to be used for the test and returns the port handle of
the Serial I/O Module (which can then be used by other scripts).

The hostname is the IP address or network name
of the controller PC
set ::hostName [info PCIX_Controller]

Load the AgtClient library
This makes all Agt??? procedures available to TCL
package require AgtClient

Define the server hostname.
Agilent E2960 PCI Express, User’s Guide, November 2004 77

Appendix Starting an Exerciser Session
AgtSetServerHostname $::hostName

proc openExerciser { {port "101/1" } } {
Establish a connection to an exerciser, acting as end node.
The probe board will be set up so that the signals are
routed from the exerciser connector
to the SYS (bottom) connector.
Parameter:
port: module/port number of the module you want to connect to
#
Return value: the port handle
#
Example: openExerciserToUpstream "103/1"
#

Create an online exerciser to upstream session
(exerciser is the upstream device)
 set session [AgtOpenSession PCIEExerciserToUpstream \
 AGT_SESSION_ONLINE]

Or if a downstream session is required
set session [AgtOpenSession PCIEExerciserToDownstream \
AGT_SESSION_ONLINE]

set the label of the test session to Analyzer
 AgtInvoke AgtSessionManager SetSessionLabel \
 $session "UpStream"

For an downstream session
AgtInvoke AgtSessionManager SetSessionLabel \
$session "DownStream"

Attach the module/port to the active session
(which is the one we created before)
 set portHandle [AgtInvoke AgtPortSelector AddPorts $port]

 return $portHandle
}

puts ""
puts "usage:"
puts " openExerciserToUpstream \[<port>\] "
puts " - Exerciser upstream session on <port>."
puts " (default: 101/1)"
puts ""
78 Agilent E2960 PCI Express, User’s Guide, November 2004

Establishing a Link Appendix
Establishing a Link

The following TCL script shows you how to use the Serial I/O Module
to establish a PCI Express link to the system or add-in card under test.

It requires as input the Serial I/O Module’s port handle (which you can
get in the example “Starting an Exerciser Session” on page 77) and
the desired link widths as bit map. It returns the link state.

Change the value from 0 to 1 if you want to use
the exerciser in loopback mode.
set ::loopbackMode 0

Load the AgtClient library.
This makes all Agt??? procedures available to TCL.
package require AgtClient

proc linkUp { {portHandle 1} {linkWidth 0xf} } {
Parameters:
portHandle: The port handle you get when you opened
the exerciser session.
Typically, this is '1'
linkWidth: The desired link width. This parameter
is a bit map. A '1' per bit enables the
appropriate width. Bit0: X1,
Bit1: X2, Bit2: X4, Bit3: X8.
#
Return value: The actual link state
#
Example: linkUp 1 0xf

Program FC Update resend period. This determines the time
between FC update packets.
The unit is 16 symbol times, which results
to (0x80 * 16 * 4 ns) 8.192 microseconds.
 AgtInvoke AgtPCIEExerciser DllPhySet $portHandle \
 PCIE_DLLPHY_FC_UPDATE_PERIOD 0x80

Program the link width with the <linkWidth> parameter
 AgtInvoke AgtPCIEExerciser DllPhySet $portHandle \
 PCIE_DLLPHY_LINKMODE_CAPABLE $linkWidth

If we are in loopback mode, we need to advertise
link and lane number during link training.
Which means, the exerciser needs to act as upstream device.
 if { $::loopbackMode == 1 } {
 AgtInvoke AgtPCIEExerciser DllPhySet $portHandle \
 PCIE_DLLPHY_UPSTREAM_PORT_ENABLE 0
 }
Agilent E2960 PCI Express, User’s Guide, November 2004 79

Appendix Sending a Single Packet

Now, train the link
 AgtInvoke AgtPCIEExerciser LinkUp $portHandle

wait 100 ms so that the link can establish
 after 100

And read out the link state 0: inactive, 1: init, 2: active
 AgtInvoke AgtPCIEExerciser DataLinkStateRead $portHandle
}

puts ""
puts "usage:"
puts " linkUp \[<portHandle>\] \[<linkWidth>\]
\[<disableScrambler>\]"
puts ""
puts " - train the PCI Express link with the parameters: "
puts ""
puts " <portHandle> (default 1)"
puts " <linkWidth> (default 0xf)"
puts " <disableScrambler> (default 0)"
puts ""

Sending a Single Packet

The following TCL script shows how to send a single packet to the
system or add-in card.

It requires as input the Serial I/O Module’s port handle and returns
whether a completion was returned.

Load the AgtClient library.
This makes all Agt??? procedures available to TCL.
package require AgtClient

proc sendTlp { {portHandle 1} } {
Parameters:
portHandle: The port handle you get when
you opened the exerciser session.
Typically, this is '1'
#
Return value: The completion status.
#
Example: sendTlp 1
#

80 Agilent E2960 PCI Express, User’s Guide, November 2004

Sending a Single Packet Appendix
Set the immediate header defaults.
 AgtInvoke AgtPCIEExerciser SiDefaultSet $portHandle

Program the immediate header fields that are
different from the default.

Memory read operation.
The FMT and TYPE header fields define the operation.
FMT and TYPE 0 -> memory read 32.
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle PCIE_SI_FMT 0
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle PCIE_SI_TYPE 0

The packet should have 4 dwords payload.
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle PCIE_SI_LEN 4

We want to use traffic class 0 .
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle PCIE_SI_TC 0x0

And we want to use tag # 5.
Need to set AUTOTAG to 0 in addition to enable programmable TAG.
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle PCIE_SI_TAG 5
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle PCIE_SI_AUTOTAG 0

We want to do a memory read from physical address 0x200000.
 AgtInvoke AgtPCIEExerciser SiReqSet \
 $portHandle PCIE_SI_MEM32_ADDR 0x200000

Now, send the immediate packet
 AgtInvoke AgtPCIEExerciser SiSend $portHandle

 set retval "No Completion"
Check if we received a completion.
 if { [AgtInvoke AgtPCIEExerciser SiStatusGet $portHandle \
 PCIE_SISTATUS_COMP_AVAILABLE] == 1} {
 # Read out the completion status and print it.
 set cs [AgtInvoke AgtPCIEExerciser SiCompGet $portHandle \
 PCIE_SI_COMP_STATUS]
 set retval "Completion Status: $cs"
 }

 return $retval
}

puts ""
puts "usage:"
puts " sendTlp \[<portHandle>\]"
puts ""
puts " - send a TLP with the exerciser at port " & \
 "<portHandle> (default 1) "
puts " The TLP is a Memory Read32 of " & \
 "4 DWORDS from 0x200000"
puts ""
Agilent E2960 PCI Express, User’s Guide, November 2004 81

Appendix Starting an Analyzer Session
Starting an Analyzer Session

The following TCL script shows you how to start an Analyzer session.

It requires as input parameter the module and port number of the
Serial I/O Module to be used for the test and returns the port handle of
the Serial I/O Module (which can then be used by other scripts).

The hostname is the IP address or network name
of the controller PC
set ::hostName [info PCIX_Controller]

Load the AgtClient library.
This makes all Agt??? procedures available to TCL.
package require AgtClient

Define the server hostname.
AgtSetServerHostname $::hostName

Establish a connection to an protocol analyzer.
Parameter:
port: module/port number of the module to be connected
#
Return value: the port handle
#
Example: openAnalyzer "103/1"
#
proc openAnalyzer { {port "101/1" } } {

Create an online analyzer session
 set session [AgtOpenSession PCIEAnalyzer AGT_SESSION_ONLINE]

set the label of the test session to Analyzer
 AgtInvoke AgtSessionManager SetSessionLabel $session "Analyzer"

Attach the module/port to the active session
(the one just created)
 set portHandle [AgtInvoke AgtPortSelector AddPorts $port]

 return $portHandle
}

puts ""
puts "usage:"
puts " openAnalyzer \[<port>\] "
puts " - Analyzer session on <port>. (default: 101/1)"
puts ""
82 Agilent E2960 PCI Express, User’s Guide, November 2004

Downloading a Trigger Setup File to the Analyzer Appendix
Downloading a Trigger Setup File
to the Analyzer

The following TCL script shows how to download a trigger setup to the
Analyzer.

It requires as input the Serial I/O Module’s port handle (which you can
get in the example “Starting an Exerciser Session” on page 77) and
the name of the trigger setup file.

The hostname is the IP address or network name
of the controller PC
set ::hostName [info PCIX_Controller]

Load the AgtClient library
package require AgtClient

Define the server hostname.
AgtSetServerHostname $::hostName

Load a previously saved trigger file
proc setupTrigger { {portHandle 1} \
 {fileName “test_trigger_on_tlp.trg”} } {
download the trigger condition defined in
<fileName> to the protocol analyzer
Parameters:
portHandle: The port handle you get when
you opened the analyzer session.
fileName: The file name that contains
the trigger condition.
#
Return value: none
#
Example: setupTrigger 1 default.trg
#

open the trigger condition file <fileName>
 set fp [open $fileName]

read the complete file int <triggerCond>
 set triggerCond [read $fp]

check if the current session is an analyzer session
 set cid [AgtGetActiveConnection]
 set sessionType [AgtGetSessionType $cid]
 if {$sessionType == “PCIEAnalyzer”} {
 # yes, this is an analyzer session -- download the trigger
 AgtInvoke AgtPCIEAnalyzer TrigSeqSet $portHandle $triggerCond
Agilent E2960 PCI Express, User’s Guide, November 2004 83

Appendix Writing Data to the Protocol Exerciser’s Data Memory
 }

}

puts ““
puts “usage:”
puts “ setupTrigger \[portHandle\] \[fileName\]”
puts “ - download the trigger condition “ & \
 “defined in <fileName> “
puts “ to the protocol analyzer”
puts ““

Writing Data to the Protocol
Exerciser’s Data Memory

You cannot write data to the Exerciser’s data memory using TCL. You
can use TCL to load files to the data memory.

The following TCL script shows how to load files to the Exerciser’s
data memory.

It requires as input the Serial I/O Module’s port handle, the starting
location in the Exerciser’s data memory for the file, and the name of
the file.

Change the hostname here if you use a remote server (host)
set ::hostName [info PCIX_Controller]

Load the AgtClient library
package require AgtClient

Define the server hostname.
AgtSetServerHostname $::hostName

proc dataMemoryAccess { {portHandle 1} {offset 0} \
 {fileName "default.txt"} } {
download the data in <fileName> to the exerciser data memory
Parameters:
portHandle: The port handle you get when
you opened the exerciser session.
offset: The offset from 0 to place the data.
fileName: The file name that contains the data.
#
Return value: none
#

84 Agilent E2960 PCI Express, User’s Guide, November 2004

Setting Up and Running Block Transfers Appendix
Example: dataMemoryAccess 1 0 default.txt
#

open the data file <fileName>
 set fp [open $fileName]

read the complete file into <data>
 binary scan [read $fp] c* data

check if the current session is an exerciser session
 set cid [AgtGetActiveConnection]
 set sessionType [AgtGetSessionType $cid]
 if {($sessionType == "PCIEExerciserToUpstream") || \
 ($sessionType == "PCIEExerciserToDownstream")} {
 # yes, this is an exerciser session -- download the data
 AgtInvoke AgtPCIEExerciser DataMemWrite $portHandle \
 $offset $data
 }

 close $fp
}

puts ""
puts "usage:"
puts " dataMemoryAccess \[portHandle\] \[offset\] \[fileName\]"
puts " - download the data defined in <fileName> " & \
 "to the exerciser"
puts " at offset <offset>"
puts ""

Setting Up and Running Block
Transfers

The following TCL script provides some examples for running block
transfers.

It requires as input the command (configRead0, configRead1,
configWrite0, configWrite1), the config bus and device number,
function number and register number to access, and the Serial I/O
Module’s port handle. The read functions return the data read.

Load the AgtClient library.
This makes all Agt??? procedures available to TCL.
package require AgtClient
Agilent E2960 PCI Express, User’s Guide, November 2004 85

Appendix Setting Up and Running Block Transfers
proc waitForCompletion { {portHandle 1} {timeout 500} } {
wait until the exerciser reports that there's a completion
available
Parameters: portHandle: the port handle to use
timeout: wait <timeout> ms maximum.
Throw an error if
this time is exceeded
Return value: none

for {set i 0 } {$i < $timeout} {incr i} {
 # wait one ms
 after 1
 if {[AgtInvoke AgtPCIEExerciser SiStatusGet \
 $portHandle PCIE_SISTATUS_COMP_AVAILABLE] == 1 } {
 break
 }
 }

 if {$i >= $timeout} {error "no completion"}
}

 puts ""
 puts "usage:"
 puts " configRead0 | configRead1 | configWrite0 | " & \
 "configWrite1 \[<bus>\] \[<dev>\] \[<func>\] \[<reg>\] " & \
 "\[<portHandle>\]"
 puts ""
 puts " - create a configuration access read or write, " & \
 "type 0 or 1, with the following parameters:"
 puts ""
 puts " <bus> config bus number (default 0)"
 puts " <dev> config device number (default 0)"
 puts " <func> function number to access (default 0)"
 puts " <reg> register number to access (default 0)"
 puts " <portHandle> port handle to use (default 1)"

proc configAccess { {rw 0} {type 0} {bus 0} {dev 0} {func 0} \
 {reg 0} {dat 0} {retry 3} {portHandle 1} } {
This is the main procedure. It will create a configuration
access and send it. After that it will wait for the completion
and retry the config access if the completion status was 'CRS'.
If the config access was a read,
this procedure will return the data.
Parameters:
rw: 0 creates a read, 1 creates a write
type: 0 creates a type0, 1 creates a type1 config access
bus: the config bus number
dev: the config device number
func: the function number to access
reg: the register number to access
dat: this contains the data to be written
86 Agilent E2960 PCI Express, User’s Guide, November 2004

Setting Up and Running Block Transfers Appendix
retry: number of times this access will be repeated
if 'CRS' completion is signaled
portHandle: the port handle to use
Return value: none if it was a write,
data if it was a read
Errors: This will throw a "no completion" error if
no completion was received within 500 ms
#

set up the Send Immediate TLP
 AgtInvoke AgtPCIEExerciser SiDefaultSet $portHandle
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle \
 PCIE_SI_TYPE [expr 4 + $type]
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle \
 PCIE_SI_FMT [expr $rw * 2]
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle \
 PCIE_SI_AUTOTAG 1
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle \
 PCIE_SI_CFG_FUNCNUM $func
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle \
 PCIE_SI_CFG_DEVNUM $dev
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle \
 PCIE_SI_CFG_BUSNUM $bus
 AgtInvoke AgtPCIEExerciser SiReqSet $portHandle \
 PCIE_SI_CFG_REGNUM $reg

 if {$rw == 1} {
 # this is a write - set si req memory
 AgtInvoke AgtPCIEExerciser SiReqMemDWSet $portHandle 0 $dat
 }

 # now, send the config request
 AgtInvoke AgtPCIEExerciser SiSend $portHandle

 # wait max. 500 ms for a completion
 waitForCompletion $portHandle 500

 # get the completion status
 set cs [AgtInvoke AgtPCIEExerciser SiCompGet 1 \
 PCIE_SI_COMP_STATUS]
 # successful completion
 if { $cs == 0 } {
 # successful completion -- get the data if it was a read
 if {$rw == 0} {
 set dat [AgtInvoke AgtPCIEExerciser SiCompMemDWGet \
 $portHandle 0]
 }
 } elseif {$cs == 2} {
 # config retry status - repeat the request if retry is < 1
 if {$retry > 0} {
 set retry [expr $retry - 1]
 configAccess $rw $type $bus $dev $func $reg \
Agilent E2960 PCI Express, User’s Guide, November 2004 87

Appendix Setting Up and Running Block Transfers
 $dat $retry $portHandle
 }
 }
}

proc configRead0 { {bus 0} {dev 0} {func 0} {reg 0} \
 {portHandle 1} } {
Create and send a config type0 read access.
Repeat the request up to three times if
a 'CRS' response is received.
Parameters:
bus: the config bus number
dev: the config device number
func: the function number to access
reg: the register number to access
Return value: the read data
Errors: This will throw a "no completion" error
if no completion was received within 500 ms
#
 configAccess 0 0 $bus $dev $func $reg 0 3 $portHandle
}

proc configRead1 { {bus 0} {dev 0} {func 0} {reg 0} \
 {portHandle 1} } {
Create and send a config type1 read access. Repeat the
request up to three times if a 'CRS' response is received.
Parameters:
bus: the config bus number
dev: the config device number
func: the function number to access
reg: the register number to access
Return value: the read data
Errors: This will throw a "no completion" error
if no completion was received within 500
ms.
#
 configAccess 0 1 $bus $dev $func $reg 0 3 $portHandle
}

proc configWrite0 { {bus 0} {dev 0} {func 0} {reg 0} \
 {dat 0} {portHandle 1} } {
Create and send a config type0 write access.
Repeat the request up to three times
if a 'CRS' response is received.
Parameters:
bus: the config bus number
dev: the config device number
func: the function number to access
reg: the register number to access
dat: this contains the data to be written
Return value: none
Errors: This will throw a "no completion" error if
88 Agilent E2960 PCI Express, User’s Guide, November 2004

Modifying Link Settings on the Exerciser Appendix
no completion was received within 500 ms.
#
 configAccess 1 0 $bus $dev $func $reg $dat 3 $portHandle
}

proc configWrite1 { {bus 0} {dev 0} {func 0} {reg 0} \
 {dat 0} {portHandle 1} } {
Create and send a config type1 write access.
Repeat the request up to three times
if a 'CRS' response is received.
Parameters:
bus: the config bus number
dev: the config device number
func: the function number to access
reg: the register number to access
dat: this contains the data to be written
Return value: none
Errors: This will throw a "no completion" error if
no completion was received within 500 ms.
#
 configAccess 1 1 $bus $dev $func $reg $dat 3 $portHandle
}

Modifying Link Settings on the
Exerciser

The following TCL script shows you how to configure an Exerciser’s
link parameters.

It requires as input the Serial I/O Module’s port handle, the desired
link widths as bit map, and whether or not scrambling should be
disabled. It returns the link state.

Change the value from 0 to 1 if you want to use
the exerciser in loopback mode.
set ::loopbackMode 0

Load the AgtClient library.
This makes all Agt??? procedures available to TCL.
package require AgtClient

proc linkUp { {portHandle 1} {linkWidth 0xf} {disableScrambler 0} }
{
Parameters:
Agilent E2960 PCI Express, User’s Guide, November 2004 89

Appendix Modifying Link Settings on the Exerciser
portHandle: The port handle you get when you opened
the exerciser session.
Typically, this is '1'
linkWidth: The desired link width. This parameter
is a bit map. A '1' per bit enables the
appropriate width. Bit0: X1,
Bit1: X2, Bit2: X4, Bit3: X8.
disableScrambler: 0: enable scrambling,
1: disable scrambling
#
Return value: The actual link state
#
Example: linkUp 1 0xf 0

Program the scrambler with the <disableScrambler> parameter
 AgtInvoke AgtPCIEExerciser DllPhySet $portHandle \
 PCIE_DLLPHY_DISABLE_SCRAMBLE $disableScrambler

Program FC Update resend period. This determines the time
between FC update packets.
The unit is 16 symbol times, which results
to (0x80 * 16 * 4 ns) 8.192 microseconds.
 AgtInvoke AgtPCIEExerciser DllPhySet $portHandle \
 PCIE_DLLPHY_FC_UPDATE_PERIOD 0x80

Program the link width with the <linkWidth> parameter
 AgtInvoke AgtPCIEExerciser DllPhySet $portHandle \
 PCIE_DLLPHY_LINKMODE_CAPABLE $linkWidth

If we are in loopback mode, we need to advertise
link and lane number during link training.
Which means, the exerciser needs to act as upstream device.
 if { $::loopbackMode == 1 } {
 AgtInvoke AgtPCIEExerciser DllPhySet $portHandle \
 PCIE_DLLPHY_UPSTREAM_PORT_ENABLE 0
 }

Now, train the link
 AgtInvoke AgtPCIEExerciser LinkUp $portHandle

wait 100 ms so that the link can establish
 after 100

And read out the link state 0: inactive, 1: init, 2: active
 AgtInvoke AgtPCIEExerciser DataLinkStateRead $portHandle
}

puts ""
puts "usage:"
puts " linkUp \[<portHandle>\] \[<linkWidth>\]
\[<disableScrambler>\]"
puts ""
90 Agilent E2960 PCI Express, User’s Guide, November 2004

Modifying Link Settings on the Exerciser Appendix
puts " - train the PCI Express link with the parameters: "
puts ""
puts " <portHandle> (default 1)"
puts " <linkWidth> (default 0xf)"
puts " <disableScrambler> (default 0)"
puts ""
Agilent E2960 PCI Express, User’s Guide, November 2004 91

Appendix Modifying Link Settings on the Exerciser
92 Agilent E2960 PCI Express, User’s Guide, November 2004

Index
Index

A

Analyzer
class (programming) 70
programming 69

B

Block memory 67

C

Control software 12

D

Data memory 67

DCOM API 70
differences to in-system API 73

Decoder 67

E

example tests 17

Exerciser 67, 68
as completer 65
as requester 62
block memory 67
class (programming) 70
components 67
controlling from SUT 73
data memory 67
decoder 67
hardware channels 68
internal overview 61
pending response memory 68
programming 69
queue 68
request memory 68
response memory 67
single packet memory 68
virtual channels 68

Exerciser for PCI Express 10

F

Firmware 12

H

Hardware channels 68

I

In-system port 73

L

LVDS 9

M

Module Manager 70

P

PCI Control 70

PCI Express
overview 7

PCI Express Exerciser 10

PCI Express Protocol Analyzer 11

PCI Express x1 9

Pending response memory 68

Port Selector 70

Product Overview 8

Programming
DCOM API 70
overview 69

Protocol Analyzer for PCI Express 11

Q

Queue 68

R

Request behavior memory 67, 68

request behavior memory 67, 68

Request memory 68

Response memory 67

S

Session
access running (programming) 72
class (programming) 70
creating new (programming) 71
multiple use 15
overview 14
starting 15

Session Manager 70

Single packet memory 68

Software
overview 12

SUT (controlling the exerciser) 73

T

test
first link 18

Test Session 70

U

User software 12

V

Virtual channels 68
Agilent E2960 PCI Express, User’s Guide, November 2004 93

S1

Copyright Agilent Technologies 2004
Printed in Germany November 2004

E2960-91020

	Content
	About this Guide
	System Overview
	Intended Use
	The Protocol Exerciser for PCI Express
	The Protocol Analyzer for PCI Express

	Software Components
	Session Concept
	Starting and Configuring a Session
	Using a Session at Several Computers

	Running Your First Tests
	Testing the Communication to an Add-In Card
	Establishing an Exerciser Session
	Establishing a PCI Express Link
	Sending a Single Data Packet
	What Happens at the Exerciser when sending a Single Packet?

	Analyzing the Communication to an Add-In Card
	Establishing an Analyzer Session
	Setting Up a Trigger
	Starting the Analyzer

	Validating the System
	Setting Up the Trigger for the System Validation Test
	Writing Data to the Protocol Exerciser’s Data Memory
	Setting Up and Running Block Transfers
	Viewing the Results Using the User Interface
	What Happens at the Exerciser when transferring a Block?

	Bringing Up and Debugging a PCI Express Add-In Card
	Setting Up the Trigger for the Bring Up and Debug Test
	Modifying Specific Link Settings
	Running the Test and Viewing the Results for the Bring Up and Debug Test

	Exerciser Architecture Overview
	Exerciser as Requester
	Exerciser as Completer
	Exerciser Components

	How to Program the Exerciser and Analyzer
	Using the DCOM API
	Opening a New Session
	Accessing a Running Session

	Controlling the Exerciser from a SUT
	Differences between the PCIe Port API and DCOM API
	Working with the PCIe Port API
	Example of Using the In-System Port

	Appendix
	Starting an Exerciser Session
	Establishing a Link
	Sending a Single Packet
	Starting an Analyzer Session
	Downloading a Trigger Setup File to the Analyzer
	Writing Data to the Protocol Exerciser’s Data Memory
	Setting Up and Running Block Transfers
	Modifying Link Settings on the Exerciser

	Index

